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THIS IS NOT A LIGO 
TALK

(In fact, the LIGO collaboration meeting is this week on the 
west coast)



This is a talk about 
enabling LIGO on OSG



Ancient History:
• LIGO was an OSG stakeholder in the early days. 

• However, we scared them off for a few reasons, including: 

• OSG was hard to use: Payload jobs were sent to GRAM using Condor-
G.  Quite unreliable and a foreign interface to users. 

• No solution for software / data: We asked sites to provide NFS 
mounts ($OSG_APP, $OSG_DATA) but these were inconsistently 
deployed and had no management tools. 

• User-unfriendly requirement of certificates: The process of getting a 
DOEGrid certificate was grueling. 

• Running opportunistically on OSG required more effort / expertise / blood / 
sweat / tears than LIGO had to spare.  Cost/Benefit didn’t make sense!



The Challenge: 
A decade later, can OSG 

do better?



Application Details - PyCBC
• PyCBC is a software suite to search LIGO data for 

Compact Binary Coalescence (CBC) events. 

• Looking for two large things spinning fast, then 
hitting each other. 

• Driver written in python; compiles then invokes JIT-
compiled C++ code. 

• Workflow managed by Pegasus and executed 
using HTCondor.



The Solution - the players

• Resource Provisioning: GlideinWMS. 

• Job management: HTCondor. 

• Data distribution: Xrootd (originally GridFTP) from 
Nebraska. 

• Software distribution: OASIS.



Job Management
• Resources were provisioned out of the OSG opportunistic pool: 

unique twist was LIGO required us to verify UID separation from 
other users. 

• Additionally, XD allocations at Stampede were used (see https://
indico.fnal.gov/contributionDisplay.py?contribId=33&confId=10571). 

• Overall, about 4M CPU hours were used in fall 2015 

• After that, it was a “normal HTCondor pool” - just as LIGO users 
were used to.

https://indico.fnal.gov/contributionDisplay.py?contribId=33&confId=10571


Last two weeks - 4.5M hours

(As a comparison, XD allocation is 2M SUs)



Data Distribution
• The relevant LIGO dataset is about 5TB and divided into 500MB 

files. 

• Pegasus knows all files that a given job will need; each job will 
need 1-2 files. 

• Jobs are several hours long: aggregate transfer rate works out 
to be about 1Mbps. 

• Solution: opportunistically use the GridFTP/Xrootd 
infrastructure at the Nebraska CMS Tier-2; stream data remotely 
to jobs. 

• No staging of data to each site was necessary.
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Looking Forward
• We “got lucky” in our data distribution solution: 

• PyCBC’s data volume requirements were small enough 
to opportunistically use Nebraska. 

• Transfer rates were small enough to  

• PyCBC was using Pegasus, which can stage data. 

• Several just-in-time bugfixes from OSG and Pegasus 
team to glue it all together! 

• Can we do better?



Looking Forward - 
ligo.osgstorage.org

• We have been working with the CVMFS team to add features for 
exporting a data federation via CVMFS. 

• This allows us to securely provide global a POSIX mount with 
all of LIGO’s data. 

• How?  See Derek’s talk tomorrow! 

• Will require CVMFS 2.2.2 on the worker node: will take a few 
months for sites to upgrade.  Probably large-scale usage by late 
summer. 

• The underlying “data federation” will be the Nebraska T2 until 
Stash does authenticated exports.

http://ligo.osgstorage.org


A Second Challenge
• LIGO’s dedicated resources have required a very 

specific host OS environment.  Scientific software is 
distributed via RPMs and installed into the system. 

• This is quite pleasant for dedicated users but 
painful for shared clusters. 

• Can OSG help here? 

• GA Tech was the first cluster we started with.



Well, sorta…
• Even though OSG can coexist better with a university cluster, there’s still a 

high hill to climb. 

• Hard for busy sysadmins to keep things sustained! 

• Not enough LIGO pipelines are converted to effectively utilize available 
resources.



Conclusions
• Using OSG services, LIGO has been able to provision LIGO owned, OSG 

opportunistic, and XD allocation-based resources at large-scale. 

• This has made a significant contribution to the PyCBC work. 

• We were able to quickly execute this through reuse of solutions done for 
the OSG VO. 

• OSG helped LIGO access contributed resources without requiring them to 
convert to LIGO Data Grid sites. 

• Challenges remain: 

• PyCBC was the “best” workflow for OSG.  Can we move others? 

• We could do a much better job of utilizing GA Tech.



So, did OSG discover 
Gravitational Waves?

• No! 

• It turns out the initial discovery was a “loud” signal that 
was noticed immediately. 

• However, OSG opportunistic computing helped support 
the analysis and improve the resulting paper. 

• The CBC team is currently analyzing the remainder of the 
science run ending in mid-January. 

• Hopefully the OSG opportunistic contribution will lead to 
significant new results!


